On Q-spectral integral variation
نویسندگان
چکیده
Let G be a graph with two non adjacent vertices and G′ the graph constructed from G by adding an edge between them. It is known that the trace of Q′ is 2 plus the trace of Q, where Q and Q′ are the signless Laplacian matrices of G and G′ respectively. So, the sum of the Q′-eigenvalues of G′ is the sum of the the Qeigenvalues of G plus two. It is said that Q-spectral integral variation occurs when either only one Q-eigenvalue is increased by two or two Q-eigenvalues are increased by 1 each one. In this article we present some conditions for the occurrence of Q-spectral integral variation under the addition of an edge to a graph G.
منابع مشابه
Spectral Scheme for Solving Fuzzy Volterra Integral Equations of First Kind
This paper discusses about the solution of fuzzy Volterra integral equation of first-kind (F-VIE1) using spectral method. The parametric form of fuzzy driving term is applied for F-VIE1, then three classifications for (F-VIE1) are searched to solve them. These classifications are considered based on the interval sign of the kernel. The Gauss-Legendre points and Legendre weights for arithmetics ...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملVariation and Rough Path Properties of Local Times of Lévy Processes
R\{0} (|y| 3 2 ∧1)n(dy) < ∞, and is a rough path of roughness p a.s. for any 2 < p < 3 under a slightly stronger condition for the Lévy measure. Then for any function g of finite q-variation (1 ≤ q < 3), we establish the integral ∫∞ −∞ g(x)dLxt as a Young integral when 1 ≤ q < 2 and a Lyons’ rough path integral when 2 ≤ q < 3. We therefore apply these path integrals to extend the Tanaka-Meyer f...
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملLocal Time Rough Path for Lévy Processes
In this paper, we will prove that the local time of a Lévy process is a rough path of roughness p a.s. for any 2 < p < 3 under some condition for the Lévy measure. This is a new class of rough path processes. Then for any function g of finite q-variation (1 ≤ q < 3), we establish the integral ∫∞ −∞ g(x)d L x t as a Young integral when 1 ≤ q < 2 and a Lyons’ rough path integral when 2 ≤ q < 3. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 35 شماره
صفحات -
تاریخ انتشار 2009